Vgr-1/BMP-6 induces osteoblastic differentiation of pluripotential mesenchymal cells.
نویسندگان
چکیده
The transforming growth factor-beta (TGF-beta) superfamily is a group of secreted growth factors that appears to play a central role in mesenchymal differentiation, including cartilage and bone formation. The present study examines the role of one member of this family, vgr-1, also called bone morphogenetic protein-6, in mesenchymal cell differentiation. This factor may be considered as a prototype for the largest subgroup of related factors within the TGF-beta superfamily, the function of which has as yet been poorly defined. vgr-1 has been localized previously to hypertrophic cartilage and has been shown to induce endochondral bone formation in vivo. To further characterize the role of vgr-1 in bone and cartilage differentiation, we stably transfected the pluripotent mesenchymal cell line ROB-C26 with a vector to overexpress vgr-1. Overexpression of this factor did not affect cell shape or morphology, but it enhanced osteoblastic differentiation in vitro and altered cellular responsiveness to retinoic acid. Furthermore, the extracellular matrix produced by these vgr-1-overexpressing cells induced ectopic bone formation in vivo and osteoblastic differentiation in vitro, similar to the matrix produced by C26 cells treated with retinoic acid. The osteoinductive effect of the matrix from vgr-1-overexpressing cells was blocked using a neutralizing vgr-1 antibody but not with a neutralizing TGF-beta 1 antibody, indicating that vgr-1 alone was required for this osteogenic effect. In contrast, the osteoinductive effect of matrix from retinoic acid-treated cells was blocked with both vgr-1 and TGF-beta 1 antibodies, suggesting that TGF-beta 1 may act prior to vgr-1 during osteoblastic differentiation. We further demonstrated that osteoinduction by vgr-1 was dependent on presentation of vgr-1 within the matrix, because the osteoinductive effect of matrix from vgr-1-overexpressing cells could not be mimicked with the addition of soluble vgr-1 to parental C26 cells. Finally, overexpression of MyoD within the C26 cells overexpressing vgr-1 converted the cells to myoblasts, indicating that vgr-1 had induced early osteoblastic.
منابع مشابه
Recombinant Vgr-1/BMP-6-expressing tumors induce fibrosis and endochondral bone formation in vivo
Members of the TGF-beta superfamily appear to modulate mesenchymal differentiation, including the processes of cartilage and bone formation. Nothing is yet known about the function of the TGF-beta-related factor vgr-1, also called bone morphogenetic protein-6 (BMP-6), and only limited studies have been conducted on the most closely related factors BMP-5, osteogenic protein-1 (OP-1) or BMP-7, an...
متن کاملPlatelet-released supernatant induces osteoblastic differentiation of human mesenchymal stem cells: potential role of BMP-2.
Platelet-rich preparations have recently gained popularity in maxillofacial and dental surgery, but their beneficial effect is still under debate. Furthermore, very little is known about the effect of platelet preparations at the cellular level, and the underlying mechanisms. In this study, we tested the effect of platelet-released supernatant (PRS) on human mesenchymal stem cell (MSC) differen...
متن کاملEvaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study
Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...
متن کاملchondroblasts, synthesis of collagen and alkaline phosphatase during chondrogenic and osteogenic differentiation, and induction of differentiation in neural cells
Members of the transforming growth factor-β (TGF-β) superfamily are structurally related proteins which include TGFβs, activins, and bone morphogenetic proteins (BMPs) (Kawabata et al., 1998a). BMPs were originally identified as proteins in bone that induce ectopic bone and cartilage formation in vivo, but are now known as multifunctional regulators of cell growth, differentiation, and apoptosi...
متن کاملThe small molecule phenamil induces osteoblast differentiation and mineralization.
Stimulation of osteoblast differentiation from mesenchymal stem cells is a potential strategy for bone repair. Bone morphogenetic proteins (BMPs) that induce osteoblastic differentiation have been successfully used in humans to treat fractures. Here we outline a new approach to the stimulation of osteoblast differentiation using small molecules that stimulate BMP activity. We have identified th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research
دوره 6 7 شماره
صفحات -
تاریخ انتشار 1995